The Role of High-Efficiency Lighting Systems in Meeting Humanitarian Needs in Camps for Refugees and Internally Displaced People

Evan Mills, Lawrence Berkeley National Lab • 15 August 2003

The US Committee for Refugees reported 13 million refugees and 22 million internally displaced people in 2002, spanning 60 countries.¹ Considering the overarching public policy precept that adequate, safe, and sustainable shelter--and associated food and non-food resources—are basic humanitarian rights, the shortcomings of lighting systems traditionally used in refugee camps must be examined.

Cegrane refugee camp, Macedonia - May 1999

Refugee camp at Benako, Tanzania, 1994. © Sebastião

Acute problems are associated with providing lighting in and around temporary shelters. Direct costs to the relief community include purchasing and airlifting supplies and otherwise supporting the provision and distribution of lighting equipment (generators, lamps, batteries, kerosene, replacement bulbs, etc.). A single kerosene lantern, operated 4 hours per day consumes 60 liters of kerosene fuel each year, or 50 kilograms. For camps with tens to hundreds of thousands of people, this translates into a substantial logistical

burden and cost. Important indirect issues include fires and air-quality considerations when fuelor biomass-based lighting is used. Many individual family shelters (typically tents) have no light at all, which undermines morale and security.

Technological advances in the past two years have opened the possibility for locally assembled, portable, lightweight, solar-powered, white-LED systems that could provide more satisfactory and cost-effective lighting (see Table 1). On an operating-cost basis alone, the added purchase cost can be recovered in less than a year compared to standard lighting. Additional benefits in simplified camp logistics have yet to be quantified.

¹U.S. Committee for Refugees. See: http://www.refugees.org/WRS2003.cfm.htm

Table 1. The importance	of lighting in camp	s for refugees and	internally displaced persons,	
and benefits of white LED systems over standard approaches				

Relief Objective	Lighting Considerations
	Many activities within a shelter require light;
Dravida adaguata and durable shalter solutions	LED systems are longer-lived and less
Provide adequate and durable shelter solutions	expensive to operate than traditional lighting solutions. LED systems are also more rugged
	than typical lighting approaches.
Provide adequate administrative, outdoor, and common-are	
services	also require illumination
	Typical light sources require a stead stream of
Minimize reliability on external resource imports	"imports" to the camp, including kerosene
	fuel, wicks, batteries, replacement bulbs, etc.
Sustain family and other social cohesion	Social interaction typically requires lighting.
	Temporary family shelters often have no light.
	Adequate illumination is essential for schools,
Provide for schools, places of worship, and play areas for	places of worship, and safe play areas. Flame-
children	based light is inadequate for reading and many
	other learning tasks.
Preserve individuals' dignity	Individually controlled lighting provides
	control of privacy Lighting is an important element of personal
	safety, especially for women and children.
Ensure refugee safety, both inside and outside of shelters	LED systems eliminate fire-risks from
	kerosene lighting and are easily portable.
Support offerte et re establishing liveliheed	The availability of lighting supports home-
Support efforts at re-establishing livelihood	based cottage industry after daylight hours
	PV-powered LED systems require a minimum
Promote self-sufficiency	of externally provided parts (batteries every
	second or third year) and no fuel.
Minimize vulnerability to disasters affecting camps	PV-powered LED systems are not susceptible to disrupted kerosene or electricity supply
Minimize vulnerability to disasters arrecting camps	lines.
	If camp residents take the LED systems back to
Fortify occupants for future disasters	their permanent settlements, they will be
	better prepared for future disasters.
	Electric, fuel-based, and (non-rechargable)
Minimize environmental impacts of establishing, operating	battery-based lighting entail significant
and decommissioning refugee camps	environmental impacts, including generator
	emissions and noise pollution, fuel spillage, and solid waste production/disposal.
	Illumination in the yellow-red spectrum
	assists mosquito control, which is a need in
Minimize vector and other disease risks	many camps. LEDs can be tuned to virtually
	any wavelength and intensity of light output.
	Some cultures require a period of continual
Provide culturally responsive conditions for burial	light on the graves of the deceased. LED
	systems would provide a lower-cost
	alternative.
Place priority on sheltering disaster victims "in-place",	While not a panacea, pre-disaster distribution of LED systems would support the shelter-in-
with relocation to remote encampments as a last resort	place goals of disaster response.
	LED systems eliminate the need for camp space
	dedicated to power production, storage and
Cost-efficiently provide essential relief services	distribution of batteries, fuel, etc. They also
	reduce the volume and weight of material
	requiring air and ground transport.